抚州论坛网:HMM-前向后向算法

admin 5个月前 (05-12) 科技 36 0

基本要素

  • 状态 \(N\)

  • 状态序列 \(S = s_1,s_2,...\)

  • 观察序列 \(O=O_1,O_2,...\)

  • \(\lambda(A,B,\pi)\)

    • 状态转移概率 \(A = \{a_{ij}\}\)
    • 发射概率 \(B = \{b_{ik}\}\)
    • 初始概率漫衍 \(\pi = \{\pi_i\}\)
  • 观察序列天生历程

    • 初始状态
    • 选择观察
    • 状态转移
    • 返回step2

HMM三大问题

  • 概率盘算问题(评估问题)

给定观察序列 \(O=O_1O_2...O_T\),模子 \(\lambda (A,B,\pi)\),盘算 \(P(O|\lambda)\),即盘算观察序列的概率

  • 解码问题

给定观察序列 \(O=O_1O_2...O_T\),模子 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)

  • 学习问题

给定观察序列 \(O=O_1O_2...O_T\),找到模子参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\)

概率盘算问题

给定模子 \(\lambda\) 和观察序列 \(O\),若何盘算\(P(O| \lambda)\)

暴力枚举每一个可能的状态序列 \(S\)

  • 对每一个给定的状态序列

    \[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t} \]

  • 一个状态序列的发生概率

    \[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t} \]

  • 团结概率

    \[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t} \]

  • 思量所有的状态序列

    \[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t} \]

\(O\) 可能由随便一个状态获得,以是需要将每个状态的可能性相加。

这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要盘算 \(2T\) 次,一共 \(N^T\) 个序列。

前向算法

在时刻 \(t\),状态为 \(i\) 时,前面的时刻观察到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\)

\[\alpha_{i}(t)=P\left(O_{1}, O_{2}, \ldots O_{t}, s_{t}=i | \lambda\right) \]

\(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是随便一个状态发出,即

\[P(O_1|\lambda) = \pi_1b_1(O_1)+\pi_2b_2(O_1)+\pi_2b_3(O_1) = \alpha_1(1)+\alpha_2(1)+\alpha_3(1) \]

\(t=2\) 时,输出为 \(O_1O_2\)\(O_2\) 可能由任一个状态发出,同时发生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻随便一个状态转移获得。假设 \(O_2\) 由状态 1 发出,如下图

\[P(O_1O_2,s_2=q_1|\lambda) = \pi_1b_1(O_1)a_{11}b_1(O_2)+\pi_2b_2(O_1)a_{21}b_1(O_2)+\pi_2b_3(O_1)a_{31}b_1(O_2) \\=\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)} \]

同理可得 \(\alpha_2(2),\alpha_3(2)\)

\[\bold{\alpha_2(2)} = P(O_1O_2,s_2=q_2|\lambda) =\bold{\alpha_1(1)}a_{12}b_1(O_2)+\bold{\alpha_2(1)}a_{22}b_1(O_2)+\bold{\alpha_3(1)}a_{32}b_1(O_2)\\\bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda) =\bold{\alpha_1(1)}a_{13}b_1(O_2)+\bold{\alpha_2(1)}a_{23}b_1(O_2)+\bold{\alpha_3(1)}a_{33}b_1(O_2) \]

以是

\[P(O_1O_2|\lambda) =P(O_1O_2,s_2=q_1|\lambda)+ P(O_1O_2,s_2=q_2|\lambda) +P(O_1O_2,s_2=q_3|\lambda)\\= \alpha_1(2)+\alpha_2(2)+\alpha_3(2) \]

以是前向算法历程如下:

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:盘算 \(\alpha(t) = (\sum^{N}_{i=1} \alpha_i(t-1)a_{ij})b_j(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(t)\)

相比暴力法,时间复杂度降低了吗?

当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的随便一个转移获得,以是单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度\(O(TN^2)\)

后向算法

在时刻 \(t\),状态为 \(i\) 时,观察到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\)

\[\beta_{i}(t)=P\left(O_{t+1},O_{t+2}, ..., O_T | s_{t}=i, \lambda\right) \]

\(t=T\) 时,由于 \(T\) 时刻之后为空,没有观察,以是 \(\beta_i(t)=1\)

\(t = T-1\) 时,观察 \(O_T\)\(O_T\) 可能由随便一个状态发生

\[\beta_i(T-1) = P(O_T|s_{t}=i,\lambda) = a_{i1}b_1(O_T)\beta_1(T)+a_{i2}b_2(O_T)\beta_2(T)+a_{i3}b_3(O_T)\beta_3(T) \]

\(t=1\) 时,观察为 \(O_{2},O_{3}, ..., O_T\)

\[\begin{aligned}\beta_1(1) &= P(O_{2},O_{3}, ..., O_T|s_1=1,\lambda)\\&=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2)\\\quad\\\beta_2(1) &= P(O_{2},O_{3}, ..., O_T|s_1=2,\lambda)\\&=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2)\\\quad\\\beta_3(1) &=P(O_{2},O_{3}, ..., O_T|s_1=3,\lambda)\\&=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2)\end{aligned} \]

以是

\[P(O_{2},O_{3}, ..., O_T|\lambda) = \beta_1(1)+\beta_2(1)+\beta_3(1) \]

后向算法历程如下:

​ step1:初始化 \(\beta_i(T=1)\)

​ step2:盘算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)

  • 时间复杂度 \(O(N^2T)\)

前向-后向算法

回首前向、后向变量:

  • \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观察序列为 \(O_1,O_2, ..., O_t\) 的概率
  • \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观察序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率

\[\begin{aligned}P(O,s_t=i|\lambda)&= P(O_1,O_2, ..., O_T,s_t=i|\lambda)\\&= P(O_1,O_2, ..., O_t,s_t=i,O_{t+1},O_{t+2}, ..., O_T|\lambda)\\&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T|O_1,O_2, ..., O_t,s_t=i,\lambda) \\&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T,s_t=i|\lambda)\\&= a_i(t)*\beta_i(t)\end{aligned} \]

即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。

使用前后向算法可以盘算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 示意时刻 \(t\) 位于隐状态 \(i\) 的概率

\[P\left(s_{t}=i, O | \lambda\right)=\alpha_{i}(t) \beta_{i}(t) \]

\[\begin{aligned}\gamma_{i}(t)&=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\&=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}\end{aligned} \]

未完待续。。。

Decoder

维特比算法

维特比算法的基础可以归纳综合为下面三点(来源于吴军:数学之美):

1、若是概率最大的路径经由篱笆网络的某点,则从最先点到该点的子路径也一定是从最先到该点路径中概率最大的。

2、假定第i时刻有k个状态,从最先到i时刻的k个状态有k条最短路径,而最终的最短路径一定经由其中的一条。

3、凭据上述性子,在盘算第i+1状态的最短路径时,只需要思量从最先到当前的k个状态值的最短路径和当前状态值到第i+1状态值的最短路径即可,如求t=3时的最短路径,即是求t=2时的所有状态结点x2i的最短路径加上t=2到t=3的各节点的最短路径。

references:

[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[2] https://www.cnblogs.com/skyme/p/4651A331.html

[3] https://www.cnblogs.com/sjjsxl/p/6285629.html

[4] https://hmmlearn.readthedocs.io/en/latest/tutorial.html

[5] https://blog.csdn.net/xueyingxue001/article/details/52396494

[6] https://blog.csdn.net/hudashi/java/article/details/87875259

[7] https://www.zhihu.com/question/20136144

[8] https://blog.csdn.net/v_JULY_v/article/details/81708386

[9] https://blog.csdn.net/u014688145/article/details/53046765

,

诚信在线

诚信在线(www.sweetyhk.com)现已开放诚信在线手机版下载。游戏公平、公开、公正,用实力赢取信誉。

申博声明:该文看法仅代表作者自己,与本平台无关。转载请注明:抚州论坛网:HMM-前向后向算法

网友评论

  • (*)

最新评论